Dynamical Low-Rank Approximation
نویسندگان
چکیده
For the low rank approximation of time-dependent data matrices and of solutions to matrix differential equations, an increment-based computational approach is proposed and analyzed. In this method, the derivative is projected onto the tangent space of the manifold of rank-r matrices at the current approximation. With an appropriate decomposition of rank-r matrices and their tangent matrices, this yields nonlinear differential equations that are well-suited for numerical integration. The error analysis compares the result with the pointwise best approximation in the Frobenius norm. It is shown that the approach gives locally quasi-optimal low rank approximations. Numerical experiments illustrate the theoretical results.
منابع مشابه
Symplectic dynamical low rank approximation of wave equations with random parameters
In this paper we propose a dynamical low-rank strategy for the approximation of second order wave equations with random parameters. The governing equation is rewritten in Hamiltonian form and the approximate solution is expanded over a set of 2S dynamical symplectic-orthogonal deterministic basis functions with timedependent stochastic coefficients. The reduced (low rank) dynamics is obtained b...
متن کاملDynamical low-rank approximation
In low-rank approximation, separation of variables is used to reduce the amount of data in computations with high-dimensional functions. Such techniques have proved their value, e.g., in quantum mechanics and recommendation algorithms. It is also possible to fold a low-dimensional grid into a high-dimensional object, and use low-rank techniques to compress the data. Here, we consider low-rank t...
متن کاملDynamical Approximation by Hierarchical Tucker and Tensor-Train Tensors
We extend results on the dynamical low-rank approximation for the treatment of time-dependent matrices and tensors (Koch & Lubich, 2007 and 2010) to the recently proposed Hierarchical Tucker tensor format (HT, Hackbusch & Kühn, 2009) and the Tensor Train format (TT, Oseledets, 2011), which are closely related to tensor decomposition methods used in quantum physics and chemistry. In this dynamic...
متن کاملDynamical approximation of hierarchical Tucker and tensor-train tensors
We extend results on the dynamical low-rank approximation for the treatment of time-dependent matrices and tensors (Koch & Lubich, 2007 and 2010) to the recently proposed Hierarchical Tucker tensor format (HT, Hackbusch & Kühn, 2009) and the Tensor Train format (TT, Oseledets, 2011), which are closely related to tensor decomposition methods used in quantum physics and chemistry. In this dynamic...
متن کاملOn the Global Convergence of the Alternating Least Squares Method for Rank-One Approximation to Generic Tensors
Tensor decomposition has important applications in various disciplines, but it remains an extremely challenging task even to this date. A slightly more manageable endeavor has been to find a low rank approximation in place of the decomposition. Even for this less stringent undertaking, it is an established fact that tensors beyond matrices can fail to have best low rank approximations, with the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 29 شماره
صفحات -
تاریخ انتشار 2007